$\begin{aligned} & \mathbf{1} \\ & \Rightarrow \\ & \Rightarrow \\ & \Rightarrow \end{aligned}$	$\begin{aligned} & \mathrm{e}^{2 x}-5 \mathrm{e}^{x}=0 \\ & \mathrm{e}^{x}\left(\mathrm{e}^{x}-5\right)=0 \\ & \mathrm{e}^{x}=5 \\ & x=\ln 5 \text { or } 1.6094 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	factoring out e^{x} or dividing $\mathrm{e}^{2 x}=5 \mathrm{e}^{x}$ by e^{x} $\mathrm{e}^{2 x} / \mathrm{e}^{x}=\mathrm{e}^{x}$ $\ln 5$ or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x=0$
or \Rightarrow \Rightarrow	$\begin{aligned} & \ln \left(\mathrm{e}^{2 x}\right)=\ln \left(5 \mathrm{e}^{x}\right) \\ & 2 x \quad=\ln 5+x \\ & x=\ln 5 \text { or } 1.6094 \end{aligned}$	M1 A1 A1 A1 [4]	taking lns on $\mathrm{e}^{2 x}=5 \mathrm{e}^{x}$ $2 x, \ln 5+x$ $\ln 5$ or 1.61 or better, mark final answer -1 for additional solutions, e.g. $x=0$

$\begin{array}{ll} 2 & \text { (i) When } t=0, T=100 \\ \Rightarrow & 100=20+b \\ \Rightarrow & b=80 \\ \Rightarrow & \text { When } t=5, T=60 \\ \Rightarrow & 60=20+80 \mathrm{e}^{-5 k} \\ \Rightarrow & e^{-5 k}=1 / 2 \\ \Rightarrow & k=\ln 2 / 5=0.139 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	substituting $t=0, T=100$ cao substituting $t=5, T=60$ $1 / 5 \ln 2$ or 0.14 or better
$\begin{array}{ll} \text { (ii) } & 50=20+80 \mathrm{e}^{-k t} \\ \Rightarrow & \mathrm{e}^{-k t}=3 / 8 \\ \Rightarrow \quad & t=\ln (8 / 3) / k=7.075 \mathrm{mins} \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Re-arranging and taking lns correctly -ft their b and k answers in range 7 to 7.1

	$100=A e^{0}=A \Rightarrow A=100$	M1A1	
	$\begin{aligned} & 50=100 \mathrm{e}^{-1500 \mathrm{k}} \\ & \mathrm{e}^{-1500 \mathrm{k}}=0.5 \end{aligned}$	M1	$50=A \mathrm{e}^{-1500 \mathrm{k}} \mathrm{ft}$ their ' A ' if used
\Rightarrow	$-1500 k=\ln 0.5$	M1	taking lns correctly
\Rightarrow	$k=-\ln 0.5 / 1500=4.62 \times 10^{-4}$		0.00046 or better
	$\begin{aligned} & 1=100 \mathrm{e}^{-k t} \\ & -k t=\ln 0.01 \\ & t=-\ln 0.01 / k \\ & =9966 \text { years } \end{aligned}$	M1 M1 A1 [3]	ft their A and k taking lns correctly art 9970

6(i) Initial mass $=20+30 e^{0}=50$ grams Long term mass $=20$ grams	M1A1 B1 [3]	
$\begin{array}{ll} \text { (ii) } & 30=20+30 \mathrm{e}^{-01 t} \\ \Rightarrow & \mathrm{e}^{-01 t}=1 / 3 \\ \Rightarrow & -0.1 t=\ln (1 / 3)=-1.0986 \ldots \\ \Rightarrow & t=11.0 \text { mins } \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	anti-logging correctly 11, 11.0, 10.99, 10.986 (not more than 3 d.p)
(iii)	B1 B1 [2]	correct shape through $(0,50)$ - ignore negative values of t $\rightarrow 20 \text { as } t \rightarrow \infty$

